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Outline

• Dynamic Connectivity

• Quick Find

• Quick Union

• Improvements

• Applications

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides
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Purpose
• Learning the steps to developing a usable algorithm

• Model the problem

• Find an algorithm to solve it

• Fast enough? Fits in memory?

• If not, figure out why

• Find a way to address the problem

• Iterate until satisfied
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Dynamic Connectivity
• Given a set of N objects.

• Union Command: connect two objects

• Find/connected query: is there a path connecting the two objects?
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union(6, 8)

union(1, 3)

union(2, 4)

union(2, 3)

union(6, 7)

connected(0, 5) NO
connected(7, 8) YES

union(0, 1)

union(4, 5)

connected(0, 5) YES
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Example
• Q. Is there a path connecting p to q ? 

• A. Yes
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Modeling the Objects

• Applications involve manipulating objects of all types.

• Pixels in a digital photo

• Computers in a network

• Friends in a social network

• Elements in a mathematical set

• Naming objects 0 to N-1 is convenient when 
programming

• Use integers as array index

• Suppress details not relevant to union-find
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Modeling the Connections
• We assume “is connected to” is an equivalence relation:

• Reflexive:  p is connected to p.

• Symmetric: if p is connected to q, then q is connected to p.

• Transitive: if p is connected to q and q is connected to r, then 
p is connected to r.

• Connected components: Maximal set of objects that are 
mutually connected
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3 connected components
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Implementing the Operations

• Find query: Check if two objects are in the same 
component

• Union command: Replace components containing two 
objects with their union
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2 connected components



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Union-find Data Structure

• Goal: Design efficient data structure for union-find

• Number of objects N can be huge

• Number of operations M can be huge

• Find queries and union commands may be intermixed
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Quick-find

• Data structure

• Integer array id[] of length N (the number of objects)

• Interpretation: p and q are connected iff (if and only if) they 
have the same id

0 1 2 3 4 5 6 7 8 9

0 1 1 8 8 0 0 1 8 8id[]
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0, 5 and 6 are connected
1, 2 and 7 are connected

3, 4, 8 and 9 are connected
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Quick-find
0 1 2 3 4 5 6 7 8 9

0 1 1 8 8 0 0 1 8 8id[]

• Find: Check is p and q have the same id

• id[6] == 0; id[1] == 1;  6 and 1 are not connected

• Union: To merge components containing p and q, change 
all entires whose id equals id[p] to id[q]

0 1 2 3 4 5 6 7 8 9

1 1 1 8 8 1 1 1 8 8id[] after union(6, 1)

Problem: many values can change

p q
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Quick-find Demo
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Initial state: no any connection,  id[i] == i.
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Quick-find Demo
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Quick-find Demo
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Quick-find Demo
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0 1 2 8 8 5 6 7 8 9id[]
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Quick-find Demo

0 1 2 3 4 5 6 7 8 9

0 1 1 8 8 5 5 7 8 8id[]
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union(6, 5)
union(9, 4)
union(2, 1)

connected(8, 9) YES

Since id[8]==id[9]

connected(5, 0) NO
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Quick-find Demo

0 1 2 3 4 5 6 7 8 9
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union(5, 0)

connected(5, 0) YES

union(7, 2)
union(6, 1)
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Quick-find Implementation
void QuickFindIni(int * id[], int N)
{

int i;
for(i = 0; i < N; i++)

id[i] = i;
}

set id of each object to itself
(N array accesses)

boolean connected(…, int p, int q)
{   return id[p] == id[q];    }

Check whether p and q 
are in the same component
(2 array accesses)

void union(…, int p, int q)
{

int pid = id[p];
int qid = id[q];
int i;
for(i = 0; i < N; i++)
    if(id[i] == pid) id[i] = qid;

}

change all entries with id[p] to id[q]
(at most 2N+2 array accesses)
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Quick-find is Too Slow 

• Cost model: Number of array access (for read or write)

Algorithm Initialize Union Find

quick-find N N 1

order of growth of number of array accesses

• Quick-Find defect: Union too expensive

• Ex. Takes N^2 array accesses to process of 
N union commands on N objects.

quadratic
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Quick-union
• Data structure

• Integer array id[] of length N (the number of objects)

• Interpretation: id[i] is parent of i

• Root of i is id[id[id[…id[i]…]]]. Keep going until it doesn’t 
change (algorithm ensures no cycles)
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Quick-union

• Find: Check if p and q have the same root

• Union: To merge components containing p and q, set the id 
of p’s root to the id of q’s root
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Root of 5 is 6

3 and 5 are not connected
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only one value changes
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Quick-union Demo

0 1 6 7 8 952 3 4

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9id[]
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Quick-union Demo

0 1 6 7 8 952 3
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0 1 2 3 3 5 6 7 8 9id[]

union(4, 3)
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Quick-union Demo
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Quick-union Demo
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Quick-union Demo
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Quick-union Demo
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Quick-union Demo
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union(5, 0)
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Quick-union Implementation

void QuickUnionIni(int * id[], int N)
{

int i;
for(i = 0; i < N; i++)

id[i] = i;
}

set id of each object to itself
(N array accesses)

int root(…, int i)
{   
    while(i != id[i]) i = id[i];
    return i;
}

Chase parent pointers until reach root
(depth of i array accesses)
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Quick-union Implementation

void union(…, int p, int q)
{

int i = root[…, p];
int j = root[…, q];
id[i] = j;

}

change root of p to point to root of q
(depth of p and q array accesses)

boolean connected(…, int p, int q)
{   
    return root[…, p] == root[…, q];
}

Check whether p and q 
have same root
(depth of p and q array accessed)
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Quick-union is Also Too Slow 

• Cost model: Number of array access (for read or write)

Algorithm Initialize Union Find

quick-find N N 1
quick-union N N N

order of growth of number of array accesses

• Quick-find defect 

• Union too expensive (N array accesses)

• Trees are flat, but too expensive to keep then flat

• Quick-union defect

• Trees can get very tall

• Find the root is too expensive (could be N array accesses)

worst case

Includes cost of finding roots
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Improvement 1: weighting

• Weighted quick-union 

• Modify quick-union to avoid tall trees

• Keep track of size of each tree (number of objects)

• Balance by linking root of smaller tree to root of larger tree

reasonable alternatives:
union by height
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Weighted Quick-union Demo

0 1 6 7 8 952 3 4

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9id[]
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Weighted Quick-union Demo

0 1 6 7

8

952

3

4

0 1 2 3 4 5 6 7 8 9

0 1 2 4 4 5 6 7 4 9id[]

union(4, 3)
union(3, 8)

weighting: make 8 point to 4 (instead of 4 to 8)
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Weighted Quick-union Demo
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union(6, 5)
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Example
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Weighted Implementation
• Data structure: Same as quick-union, but maintain extra 

array sz[i] to count number of objects in the tree rooted 
as i

• Find: Identical to quick-union

• Union: Modify quick-union to

• Link root of smaller tree to root of larger tree

• Update the sz[] array

return root[…, p] == root[…, q];

int i = root[…, p];
int j = root[…, q];
If (i == j) return;
If (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else                 { id[j] = i; sz[i] += sz[j]; }       
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Weighted Quick-union Analysis
• Running time

• Find (mainly for getting roots): takes time proportional to 
depth of p and q

• Union: takes constant time, given roots

• Proposition: Depth of any node x is at most lg N

lg = base-2 logarithm
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x

4
N = 10

Depth(x) = 2 <= lg N
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Weighted Quick-union Analysis
• Proposition: Depth of any node x is at most lg N

• Pf.  When does depth of x increase ?

• Increases by 1 when tree T1 containing x is merged into 
another tree T2

• The size of the tree containing x at least doubles since |T2| >= |T1|

• Size of tree containing x can double at most lg N times
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Weighted Quick-union Analysis

• Running time

• Find (mainly for getting roots): takes time proportional to 
depth of p and q

• Union: takes constant time, given roots

• Proposition: Depth of any node x is at most lg N

Algorithm Initialize Union Find

quick-find N N 1
quick-union N N N

weighted QU N lg N lg N

order of growth of number of array accesses

Includes cost of finding rootsQ. Stop here?
A. No, easy to improve further
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Improvement 2: path compression
• quick-union with path compression 

• Just after computing the root of p, set the id of each 
examined node to that root or its grandparent

• Two-pass implementation: add second loop to root() to set the id[] 
of each examined node to root
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Improvement 2: path compression
• quick-union with path compression 

• Just after computing the root of p, set the id of each 
examined node to that root or its grandparent

• Two-pass implementation: add second loop to root() to set the id[] 
of each examined node to root

• Simpler one-pass variant: Make every other node in path point to 
its grandparent (thereby halving path length)

int root(…, int i)
{   while(i != id[i]) 

{
id[i] = id[id[i]];
i = id[i];

}
    return i;}

In practice:  No reason not to! 
Keeps tree completely flat
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Weighting & Path Compression
• Weighted quick-union with path 

compression (WQUPC): amortized analysis

• Proposition. [Hopcroft Ulman, Tarjan] Starting 
from an empty data structure, any sequence M 
union-find operations on N objects makes <=   
c (N + M lg* N) array accesses

• Linear-time algorithm for M union-find ops on 
N objets?

• In theory, WQUPC is not quite linear

• In practice. WQUPC is linear

N lg* N

1 0
2 1
4 2

16 3
65536 4

2^65536 5

Simple algorithm with fascinating mathematics! 

Amazing fact [Fredman-Saks] : No linear-time algorithm exists.

Iterate log function
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Summary
• Bottom line. Weighted quick-union (with path 

compression) makes it possible to solve problems that 
could not otherwise be addressed 

Algorithm Worst-case time

quick-find M N

quick-union M N

weighted QU N + M lg N

QU + path compression N + M lg N

weighted QU + PC N + M lg* N

M union-find operations on a set of N objects

• Ex. [10^9 unions and finds on 10^9 objects]

• WQUPC reduces time from 30 years to 6 seconds

• Supercomputer won’t help much; good algorithm enables solution
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Union-find applications
• Percolation

• Games(Go, Hex)

• Dynamic connectivity

• Least common ancestor

• Equivalence of finite state automata

• …

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

Done!

To be introduced

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides


CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Percolation
• A model for many physical systems:

• N-by-N grid of sites

• Each site is open with probability p (or blocked with 
probability 1 - p)

• System percolates iff top and bottom are connected by open 
sites
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Percolation
• A model for many physical systems:

• N-by-N grid of sites

• Each site is open with probability p (or blocked with 
probability 1 - p)

• System percolates iff top and bottom are connected by open 
sites
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Likelihood of Percolation

• Depends on site vacancy probability p
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Percolation Phase Transition

• When N is large, theory guarantees a sharp threshold p*.

• p > p* : almost certainly percolates

• p < p* : almost certainly does not percolates

• Q. What is the value of p* ?
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Solution: Monte Carlo Simulation

• Initialize N-by-N whole grid to be blocked

• Declare random sites open until top connected to 
bottom

• Vacancy percentage estimates p*

N = 20
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How to Check Percolation?
• Dynamic connectivity solution to estimate percolation 

threshold

• Create an object for each site and name them 0 to N^2 -1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

How to Check Percolation?
• Dynamic connectivity solution to estimate percolation 

threshold

• Create an object for each site and name them 0 to N^2 -1

• Sites are in same component if connected by open sites.
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How to Check Percolation?
• Dynamic connectivity solution to estimate percolation 

threshold.

• Create an object for each site and name them 0 to N^2 -1

• Sites are in same component if connected by open sites.

• Percolates iff any site on bottom row is connected to site on 
top row

brute-force algorithm: N^2 calls to connected()

top row

bottom row
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How to Check Percolation?
• Dynamic connectivity solution to estimate percolation 

threshold.

• Clever trick: Introduce 2 virtual sites (and connections to top 
and bottom)

• Percolates iff virtual top site is connected to virtual bottom site

top row

bottom row

efficient algorithm: only 1 call to connected()
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How to Model Opening a New Site?

• A. Mark new site as open; connect it to all of its adjacent 
open sites;

up to 4 calls to union()



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Percolation Threshold
• Q. What is percolation threshold p* ?

• A. About 0.592746 for large square lattice
constant known only via simulation

Fast algorithms enables accurate answer to scientific question.
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Purpose
• Learning the steps to developing a usable algorithm

• Model the problem

• Find an algorithm to solve it

• Fast enough? Fits in memory?

• If not, figure out why

• Find a way to address the problem

• Iterate until satisfied
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Thank You!


