
CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100B Data Structures
Union-Find

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Outline

• Dynamic Connectivity

• Quick Find

• Quick Union

• Improvements

• Applications

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Purpose
• Learning the steps to developing a usable algorithm

• Model the problem

• Find an algorithm to solve it

• Fast enough? Fits in memory?

• If not, figure out why

• Find a way to address the problem

• Iterate until satisfied

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Outline

• Dynamic Connectivity

• Quick Find

• Quick Union

• Improvements

• Applications

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Dynamic Connectivity
• Given a set of N objects.

• Union Command: connect two objects

• Find/connected query: is there a path connecting the two objects?

0

1

2

3

4

5

6

7

8

9

union(6, 8)

union(1, 3)

union(2, 4)

union(2, 3)

union(6, 7)

connected(0, 5) NO
connected(7, 8) YES

union(0, 1)

union(4, 5)

connected(0, 5) YES

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example
• Q. Is there a path connecting p to q ?

• A. Yes

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Modeling the Objects

• Applications involve manipulating objects of all types.

• Pixels in a digital photo

• Computers in a network

• Friends in a social network

• Elements in a mathematical set

• Naming objects 0 to N-1 is convenient when
programming

• Use integers as array index

• Suppress details not relevant to union-find

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Modeling the Connections
• We assume “is connected to” is an equivalence relation:

• Reflexive: p is connected to p.

• Symmetric: if p is connected to q, then q is connected to p.

• Transitive: if p is connected to q and q is connected to r, then
p is connected to r.

• Connected components: Maximal set of objects that are
mutually connected

0

4

1

5

2

6

3

7

{0} {1,4,5} {2,3,6,7}

3 connected components

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Implementing the Operations

• Find query: Check if two objects are in the same
component

• Union command: Replace components containing two
objects with their union

0

4

1

5

2

6

3

7

union(2, 5) 0

4

1

5

2

6

3

7

{0} {1,4,5} {2,3,6,7}

3 connected components

{0} {1,4,5,2,3,6,7}

2 connected components

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Union-find Data Structure

• Goal: Design efficient data structure for union-find

• Number of objects N can be huge

• Number of operations M can be huge

• Find queries and union commands may be intermixed

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Outline

• Union-Find Problem

• Quick Find

• Quick Union

• Improvements

• Applications

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find

• Data structure

• Integer array id[] of length N (the number of objects)

• Interpretation: p and q are connected iff (if and only if) they
have the same id

0 1 2 3 4 5 6 7 8 9

0 1 1 8 8 0 0 1 8 8id[]

0

5

1

6

2

7

3

8

4

9

0, 5 and 6 are connected
1, 2 and 7 are connected

3, 4, 8 and 9 are connected

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find
0 1 2 3 4 5 6 7 8 9

0 1 1 8 8 0 0 1 8 8id[]

• Find: Check is p and q have the same id

• id[6] == 0; id[1] == 1; 6 and 1 are not connected

• Union: To merge components containing p and q, change
all entires whose id equals id[p] to id[q]

0 1 2 3 4 5 6 7 8 9

1 1 1 8 8 1 1 1 8 8id[] after union(6, 1)

Problem: many values can change

p q

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find Demo

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9id[]

0

5

1

6

2

7

3

8

4

9

Initial state: no any connection, id[i] == i.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find Demo

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9id[]

0

5

1

6

2

7

3

8

4

9
union(4, 3)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find Demo

0 1 2 3 4 5 6 7 8 9

0 1 2 3 3 5 6 7 8 9id[]

0

5

1

6

2

7

3

8

4

9
union(4, 3)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find Demo

0 1 2 3 4 5 6 7 8 9

0 1 2 8 8 5 6 7 8 9id[]

0

5

1

6

2

7

3

8

4

9
union(3, 8)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find Demo

0 1 2 3 4 5 6 7 8 9

0 1 1 8 8 5 5 7 8 8id[]

0

5

1

6

2

7

3

8

4

9

union(6, 5)
union(9, 4)
union(2, 1)

connected(8, 9) YES

Since id[8]==id[9]

connected(5, 0) NO

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find Demo

0 1 2 3 4 5 6 7 8 9

1 1 1 8 8 1 1 1 8 8id[]

0

5

1

6

2

7

3

8

4

9

union(5, 0)

connected(5, 0) YES

union(7, 2)
union(6, 1)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find Implementation
void QuickFindIni(int * id[], int N)
{

int i;
for(i = 0; i < N; i++)

id[i] = i;
}

set id of each object to itself
(N array accesses)

boolean connected(…, int p, int q)
{ return id[p] == id[q]; }

Check whether p and q
are in the same component
(2 array accesses)

void union(…, int p, int q)
{

int pid = id[p];
int qid = id[q];
int i;
for(i = 0; i < N; i++)
 if(id[i] == pid) id[i] = qid;

}

change all entries with id[p] to id[q]
(at most 2N+2 array accesses)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-find is Too Slow

• Cost model: Number of array access (for read or write)

Algorithm Initialize Union Find

quick-find N N 1

order of growth of number of array accesses

• Quick-Find defect: Union too expensive

• Ex. Takes N^2 array accesses to process of
N union commands on N objects.

quadratic

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Outline

• Dynamic Connectivity

• Quick Find

• Quick Union

• Improvements

• Applications

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union
• Data structure

• Integer array id[] of length N (the number of objects)

• Interpretation: id[i] is parent of i

• Root of i is id[id[id[…id[i]…]]]. Keep going until it doesn’t
change (algorithm ensures no cycles)

0 1 2 3 4 5 6 7 8 9

0 1 9 4 9 6 6 7 8 9id[]

0

5

1 6

2

7

3

8

4

9

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union

• Find: Check if p and q have the same root

• Union: To merge components containing p and q, set the id
of p’s root to the id of q’s root

0 1 2 3 4 5 6 7 8 9

0 1 9 4 9 6 6 7 8 9id[]

0

5

1 6

2

7

3

8

4

9

union(3, 5)

0

5

1 6

2

7

3

8

4

9

Root of 3 is 9
Root of 5 is 6

3 and 5 are not connected

0 1 2 3 4 5 6 7 8 9

0 1 9 4 9 6 6 7 8 6id[]

only one value changes

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Demo

0 1 6 7 8 952 3 4

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9id[]

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Demo

0 1 6 7 8 952 3

4

0 1 2 3 4 5 6 7 8 9

0 1 2 3 3 5 6 7 8 9id[]

union(4, 3)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Demo

0 1 6 7 8 952

3

4

0 1 2 3 4 5 6 7 8 9

0 1 2 8 3 5 6 7 8 9id[]

union(3, 8)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Demo

0 1

6

7 8 952

3

4

0 1 2 3 4 5 6 7 8 9

0 1 2 8 3 5 5 7 8 9id[]

union(6, 5)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Demo

0 1

6

7 8

9

52

3

4

0 1 2 3 4 5 6 7 8 9

0 1 2 8 3 5 5 7 8 8id[]

union(9, 4)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Demo

0 1

6

7 8

9

5

2 3

4

0 1 2 3 4 5 6 7 8 9

0 1 1 8 3 5 5 7 8 8id[]

union(2, 1)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Demo

0

6

7

8

9

5

2

3

4

0 1 2 3 4 5 6 7 8 9

1 8 1 8 3 0 5 1 8 8id[]

union(5, 0)
union(7, 2)
union(6, 1)
union(7, 3)

1

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Implementation

void QuickUnionIni(int * id[], int N)
{

int i;
for(i = 0; i < N; i++)

id[i] = i;
}

set id of each object to itself
(N array accesses)

int root(…, int i)
{
 while(i != id[i]) i = id[i];
 return i;
}

Chase parent pointers until reach root
(depth of i array accesses)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union Implementation

void union(…, int p, int q)
{

int i = root[…, p];
int j = root[…, q];
id[i] = j;

}

change root of p to point to root of q
(depth of p and q array accesses)

boolean connected(…, int p, int q)
{
 return root[…, p] == root[…, q];
}

Check whether p and q
have same root
(depth of p and q array accessed)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick-union is Also Too Slow

• Cost model: Number of array access (for read or write)

Algorithm Initialize Union Find

quick-find N N 1
quick-union N N N

order of growth of number of array accesses

• Quick-find defect

• Union too expensive (N array accesses)

• Trees are flat, but too expensive to keep then flat

• Quick-union defect

• Trees can get very tall

• Find the root is too expensive (could be N array accesses)

worst case

Includes cost of finding roots

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Outline

• Dynamic Connectivity

• Quick Find

• Quick Union

• Improvements

• Applications

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Improvement 1: weighting

• Weighted quick-union

• Modify quick-union to avoid tall trees

• Keep track of size of each tree (number of objects)

• Balance by linking root of smaller tree to root of larger tree

reasonable alternatives:
union by height

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighted Quick-union Demo

0 1 6 7 8 952 3 4

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9id[]

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighted Quick-union Demo

0 1 6 7

8

952

3

4

0 1 2 3 4 5 6 7 8 9

0 1 2 4 4 5 6 7 4 9id[]

union(4, 3)
union(3, 8)

weighting: make 8 point to 4 (instead of 4 to 8)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighted Quick-union Demo

0

1

6

789

5 2

3

4

0 1 2 3 4 5 6 7 8 9

6 2 6 4 6 6 6 2 4 4id[]

union(6, 5)

union(7, 3)

weighting: make 4 point to 6 (instead of 6 to 4)

union(9, 4)

union(2, 1)

union(5, 0)

union(7, 2)

union(6, 1)

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighted Implementation
• Data structure: Same as quick-union, but maintain extra

array sz[i] to count number of objects in the tree rooted
as i

• Find: Identical to quick-union

• Union: Modify quick-union to

• Link root of smaller tree to root of larger tree

• Update the sz[] array

return root[…, p] == root[…, q];

int i = root[…, p];
int j = root[…, q];
If (i == j) return;
If (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighted Quick-union Analysis
• Running time

• Find (mainly for getting roots): takes time proportional to
depth of p and q

• Union: takes constant time, given roots

• Proposition: Depth of any node x is at most lg N

lg = base-2 logarithm

0

1

6

789

5 2

x

4
N = 10

Depth(x) = 2 <= lg N

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighted Quick-union Analysis
• Proposition: Depth of any node x is at most lg N

• Pf. When does depth of x increase ?

• Increases by 1 when tree T1 containing x is merged into
another tree T2

• The size of the tree containing x at least doubles since |T2| >= |T1|

• Size of tree containing x can double at most lg N times

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighted Quick-union Analysis

• Running time

• Find (mainly for getting roots): takes time proportional to
depth of p and q

• Union: takes constant time, given roots

• Proposition: Depth of any node x is at most lg N

Algorithm Initialize Union Find

quick-find N N 1
quick-union N N N

weighted QU N lg N lg N

order of growth of number of array accesses

Includes cost of finding rootsQ. Stop here?
A. No, easy to improve further

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Improvement 2: path compression
• quick-union with path compression

• Just after computing the root of p, set the id of each
examined node to that root or its grandparent

• Two-pass implementation: add second loop to root() to set the id[]
of each examined node to root

0

1

6

7

89

5 2

3

4

0

1

6

789

5 2

3

4

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Improvement 2: path compression
• quick-union with path compression

• Just after computing the root of p, set the id of each
examined node to that root or its grandparent

• Two-pass implementation: add second loop to root() to set the id[]
of each examined node to root

• Simpler one-pass variant: Make every other node in path point to
its grandparent (thereby halving path length)

int root(…, int i)
{ while(i != id[i])

{
id[i] = id[id[i]];
i = id[i];

}
 return i;}

In practice: No reason not to!
Keeps tree completely flat

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Weighting & Path Compression
• Weighted quick-union with path

compression (WQUPC): amortized analysis

• Proposition. [Hopcroft Ulman, Tarjan] Starting
from an empty data structure, any sequence M
union-find operations on N objects makes <=
c (N + M lg* N) array accesses

• Linear-time algorithm for M union-find ops on
N objets?

• In theory, WQUPC is not quite linear

• In practice. WQUPC is linear

N lg* N

1 0
2 1
4 2

16 3
65536 4

2^65536 5

Simple algorithm with fascinating mathematics!

Amazing fact [Fredman-Saks] : No linear-time algorithm exists.

Iterate log function

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Summary
• Bottom line. Weighted quick-union (with path

compression) makes it possible to solve problems that
could not otherwise be addressed

Algorithm Worst-case time

quick-find M N

quick-union M N

weighted QU N + M lg N

QU + path compression N + M lg N

weighted QU + PC N + M lg* N

M union-find operations on a set of N objects

• Ex. [10^9 unions and finds on 10^9 objects]

• WQUPC reduces time from 30 years to 6 seconds

• Supercomputer won’t help much; good algorithm enables solution

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Outline

• Dynamic Connectivity

• Quick Find

• Quick Union

• Improvements

• Applications

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Union-find applications
• Percolation

• Games(Go, Hex)

• Dynamic connectivity

• Least common ancestor

• Equivalence of finite state automata

• …

Resources: https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

Done!

To be introduced

https://www.coursera.org/learn/algorithms-part1/supplement/bcelg/lecture-slides

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Percolation
• A model for many physical systems:

• N-by-N grid of sites

• Each site is open with probability p (or blocked with
probability 1 - p)

• System percolates iff top and bottom are connected by open
sites

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Percolation
• A model for many physical systems:

• N-by-N grid of sites

• Each site is open with probability p (or blocked with
probability 1 - p)

• System percolates iff top and bottom are connected by open
sites

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Likelihood of Percolation

• Depends on site vacancy probability p

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Percolation Phase Transition

• When N is large, theory guarantees a sharp threshold p*.

• p > p* : almost certainly percolates

• p < p* : almost certainly does not percolates

• Q. What is the value of p* ?

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Solution: Monte Carlo Simulation

• Initialize N-by-N whole grid to be blocked

• Declare random sites open until top connected to
bottom

• Vacancy percentage estimates p*

N = 20

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

How to Check Percolation?
• Dynamic connectivity solution to estimate percolation

threshold

• Create an object for each site and name them 0 to N^2 -1

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

How to Check Percolation?
• Dynamic connectivity solution to estimate percolation

threshold

• Create an object for each site and name them 0 to N^2 -1

• Sites are in same component if connected by open sites.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

How to Check Percolation?
• Dynamic connectivity solution to estimate percolation

threshold.

• Create an object for each site and name them 0 to N^2 -1

• Sites are in same component if connected by open sites.

• Percolates iff any site on bottom row is connected to site on
top row

brute-force algorithm: N^2 calls to connected()

top row

bottom row

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

How to Check Percolation?
• Dynamic connectivity solution to estimate percolation

threshold.

• Clever trick: Introduce 2 virtual sites (and connections to top
and bottom)

• Percolates iff virtual top site is connected to virtual bottom site

top row

bottom row

efficient algorithm: only 1 call to connected()

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

How to Model Opening a New Site?

• A. Mark new site as open; connect it to all of its adjacent
open sites;

up to 4 calls to union()

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Percolation Threshold
• Q. What is percolation threshold p* ?

• A. About 0.592746 for large square lattice
constant known only via simulation

Fast algorithms enables accurate answer to scientific question.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Purpose
• Learning the steps to developing a usable algorithm

• Model the problem

• Find an algorithm to solve it

• Fast enough? Fits in memory?

• If not, figure out why

• Find a way to address the problem

• Iterate until satisfied

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Thank You!

