
CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

CSCI2100 Data Structures 
Dynamic Programming

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king


CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Outline

• Coin Changing Problem

• Longest Common Subsequence

Resources:  
http://www.cs.uni.edu/~fienup/cs188s05/lectures/lec6_1-27-05.htm

http://interactivepython.org/runestone/static/pythonds/Recursion/DynamicProgramming.html 
http://web.stanford.edu/class/cs161/

http://www.cs.cmu.edu/afs/cs/academic/class/15451-s15/

http://www.cs.uni.edu/~fienup/cs188s05/lectures/lec6_1-27-05.htm
http://interactivepython.org/runestone/static/pythonds/Recursion/DynamicProgramming.html
http://web.stanford.edu/class/cs161/
http://www.cs.cmu.edu/afs/cs/academic/class/15451-s15/


CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Coin Changing Problem

• Input:

•    coins denominations, 

• A positive integer 

• Output:

• The minimum number of coins that changes 

• Example:

• Making 40 cents change with coin types {1, 5, 10, 25, 50}

• The optimal solution takes 3 coins (25+10+5)

1 = d1 < d2 < · · · < dk

n

n

k



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Greedy Algorithm

• At each iteration, add coin of the largest value that does 
not take us pass the amount to be paid

• Example:

• Making 40 cents change with coin types {1, 5, 10, 25, 50}

• {25}                     //40-25=15 cents left

• {25, 10}                //15-10=5 cents left

• {25, 10, 5}             //5-5=0 cents left

• Return 3

• Does it always give optimal solution?



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Greedy Algorithm

• Counterexample:

• Now we have 20-cent coins

• Making 40 cents change with coin types {1, 5, 10, 20, 25, 50}

• {25}                     //40-25=15 cents left

• {25, 10}                //15-10=5 cents left

• {25, 10, 5}             //5-5=0 cents left

• Return 3

• But the optimal solution should be 2 coins (20+20)

• Greedy algorithm does not guarantee optimality



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Coin Changing Problem

• Coin changing problem has optimal substructure

• Optimal solutions to sub-problems are sub-solutions to the 
optimal solution of the original problem

MinNumCoins(n) = min

8
>>><

>>>:

MinNumCoins(n� d1) + 1

MinNumCoins(n� d2) + 1

. . .

MinNumCoins(n� dk) + 1

Can we simply use a 
recursive function to solve it?



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(5) = min

(
MinNumCoins(5� 1) + 1

MinNumCoins(5� 2) + 1

5



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(5) = min

(
MinNumCoins(4) + 1

MinNumCoins(3) + 1

5

4 3



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(4) = min

(
MinNumCoins(3) + 1

MinNumCoins(2) + 1

5

4 3

3 2



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(3) = min

(
MinNumCoins(2) + 1

MinNumCoins(1) + 1

5

4 3

3 2

2 1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(3) = min

(
MinNumCoins(2) + 1

MinNumCoins(1) + 1

5

4 3

3 2

2 1

2 1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(3) = min

(
MinNumCoins(2) + 1

MinNumCoins(1) + 1

5

4 3

3 2

2 1

2 1

Base cases:
MinNumCoins(2) = 1

MinNumCoins(1) = 1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(3) = min

(
1 + 1

1 + 1
= 2

5

4 3

3 2

2 1

2 1

Base cases:
MinNumCoins(2) = 1

MinNumCoins(1) = 1

(2)



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(4) = min

(
1 + 1

2 + 1
= 2

5

4 3

3 2

2 1

2 1

Base cases:
MinNumCoins(2) = 1

MinNumCoins(1) = 1

(2)

(2)



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

MinNumCoins(3) = min

(
1 + 1

1 + 1
= 2

5

4 3

3 2

2 1

2 1

Base cases:
MinNumCoins(2) = 1

MinNumCoins(1) = 1

(2)

(2)(2)



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

5

4 3

3 2

2 1

2 1

Base cases:
MinNumCoins(2) = 1

MinNumCoins(1) = 1

MinNumCoins(5) = min

(
2 + 1

2 + 1
= 3

(2)

(2)(2)

(3)



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach

• Example:

• Making 5 cents change with coin types {1, 2}

• Output 3, which is the optimal solution

What if 
we have a larger 

problem?

5

4 3

3 2

2 1

2 1

Base cases:
MinNumCoins(2) = 1

MinNumCoins(1) = 1

(2)

(2)(2)

(3)



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recursive Approach
• Another Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

• Sub-problems overlap a lot!

• MinNumCoin(15) is computed at least 3 times!

• Computing MinNumCoin(15) takes 52 function calls

Inefficient!



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Coin Changing Problem

• Two properties of coin changing problem

• Optimal substructure

•  

• Overlapping sub-problems

• Lots of different MinNumCoins(i) will use MinNumCoins(j)

• We should apply dynamic programming (DP) to reuse 
answers to sub-problems

MinNumCoins(n) = min

8
><

>:

MinNumCoins(n� d1) + 1

. . .

MinNumCoins(n� dk) + 1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recipe of Applying DP

• Step 1: identify optimal substructure

• We already have 

• Step 2: devise a table lookup strategy

• Solve smaller problems before larger ones

• Look-up answers to smaller problems when solving larger 
subproblems

MinNumCoins(n) = min

8
><

>:

MinNumCoins(n� d1) + 1

. . .

MinNumCoins(n� dk) + 1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0

n

MinNumCoin

…
MinNumCoin(0) = 0



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1

n

MinNumCoin

MinNumCoins(1) = MinNumCoins(1� 1) + 1

= MinNumCoins(0) + 1

= 1

…



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1 2

MinNumCoins(2) = MinNumCoins(2� 1) + 1

= MinNumCoins(1) + 1

= 2

n

MinNumCoin

…



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3

MinNumCoins(3) = MinNumCoins(3� 1) + 1

= MinNumCoins(2) + 1

= 3

n

MinNumCoin

…



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4

MinNumCoins(4) = MinNumCoins(4� 1) + 1

= MinNumCoins(3) + 1

= 4

n

MinNumCoin

…



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 1

MinNumCoins(5) = min

(
MinNumCoins(5� 5) + 1

MinNumCoins(5� 1) + 1
= 1

n

MinNumCoin

…



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 1 2

n

MinNumCoin

…

MinNumCoins(6) = min

(
MinNumCoins(6� 5) + 1

MinNumCoins(6� 1) + 1
= 2



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 1 2 3 4 5 1

n

MinNumCoin

…

MinNumCoins(10) = min

8
><

>:

MinNumCoins(10� 10) + 1

MinNumCoins(10� 5) + 1

MinNumCoins(10� 1) + 1

= 1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

• Example:

• Making 26 cents change with coin types {1, 5, 10, 25}

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 1 2 3 4 5 1

n

MinNumCoin

11 12 13 14 15 16 17 18 19 20 21

2 3 4 5 2 3 4 5 6 2 3

n

MinNumCoin

22 23 24 25 26

4 5 6 1 2

n

MinNumCoin



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

DP Algorithm
int MinNumCoin(int coins[], int num_coin_types, int n){
    int i, j;
    int table[n+1];
    table[0] = 0;
    // In the worst case, we need n coins to change n cents
    for (i=1; i<=n; i++)
        table[i] = i;
    // Compute minimum coins required for all values from 1 to n
    for (i=1; i<=n; i++){
        for (j=0; j<num_coin_types; j++)
            if (coins[j] <= i){
                int sub_res = table[i-coins[j]];
                if (sub_res + 1 < table[i])
                    table[i] = sub_res + 1;
            }
    }
    return table[n];
}

Resources: https://www.geeksforgeeks.org/find-minimum-number-of-coins-that-make-a-change/

Complexity:
O(nk)

https://www.geeksforgeeks.org/find-minimum-number-of-coins-that-make-a-change/


CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Longest Common Subsequence

• Input:

• Two strings:    and   

• Output:

• The longest sequence of characters that appear left-to-right 
(but not necessarily in a contiguous block) in both    and 

• Example:

•    =ABCDEFGH and   =ABDFGHI 

• Their longest common subsequence (LCS) is ABDFGH

X Y

X Y

X Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recipe of Applying DP

• Step 1: identify optimal substructure

• Step 2: devise a table lookup strategy



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recipe of Applying DP

• Step 1: identify optimal substructure

• Step 2: devise a table lookup strategy



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Optimal Substructure

• Define prefix     as the first i consecutive characters in 

• Example:    =ACGGT,      =ACGG

• Subproblem: 

• Finding LCS of a prefix of    and a prefix of 

• e.g., LCS of      and 

Xi X

X X4

X Y

Xi Yj



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

• For simplicity, let’s worry first about finding the length of 
the LCS

• Then modify the algorithm to produce the LCS

• Problem:

• Find the length of LCS of X and Y

• Subproblem:

• Find the length of LCS of prefixes to X and Y 

• Let C[i,j]=length_of_LCS(    ,    )

Optimal Substructure

Xi Yj



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Optimal Substructure 

• Case 1: If X[i]=Y[j], where X[i] is the i-th character in X

• Then C[i,j]=1+C[i-1,j-1]

• For example: 

• LCS(        ,       )=ACG

• LCS(    ,    )=ACGA = LCS(        ,       ) followed by A

A C G G A A C G C T T A

X[i] Y[j]

X Y

Xi�1 Yj�1

Xi Yj Xi�1Yj�1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Optimal Substructure 

• Case 2: If X[i]!=Y[j]

• Then C[i,j] = max{ C[i-1,j], C[i,j-1] }. 

• For example:

• Either LCS(    ,    ) = LCS(        ,    ) and T is not involved,

• Or LCS(    ,    ) = LCS(    ,        ) and A is not involved 

A C G G T

X[i]

A C G C T T A

Y[j]

X Y

Xi Yj

Xi Yj Yj�1Xi

YjXi�1



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Optimal Substructure

• Recursive Formulation

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

A C G G T

A C G G A

A C G C T T A

A C G G T

A C G C T T A

X

Y

X

Y

X

Y

Base case:

Case 1: Case 2:



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recipe of Applying DP

• Step 1: identify optimal substructure

• Step 2: devise a table lookup strategy

• Solve smaller problems before larger ones

• Look-up answers to smaller problems when solving larger 
subproblems

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0

0

0

0

0

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

Base case!

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1

0

0

0

0

0 1 2 3 4

C[i,j]

C[1, 1] = C[0, 0] + 1 = 1

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1

0

0

0

0

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

C[1, 2] = max{C[1, 1], C[0, 2]} = 1

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1 1

0

0

0

0

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

C[1, 3] = max{C[1, 2], C[0, 3]} = 1

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1 1 1

0

0

0

0

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

C[1, 3] = max{C[1, 3], C[0, 4]} = 1

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1 1 1

0 1

0

0

0

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

C[2, 1] = max{C[2, 0], C[1, 1]} = 1

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1 1 1

0 1 2

0

0

0

0 1 2 3 4

C[i,j]

C[2, 2] = C[1, 1] + 1 = 1

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1 1 1

0 1 2 2

0

0

0

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

C[2, 3] = max{C[2, 2], C[1, 3]} = 2

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0

0

0

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

C[2, 4] = max{C[2, 3], C[1, 4]} = 2

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Table Lookup Strategy

0

1

2

3

4

5

A C T G

A C G G A

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]

C[i, j] =

8
><

>:

0 if i = 0 or j = 0

C[i� 1, j � 1] + 1 if X[i] = Y [j] and i, j > 0

max{C[i, j � 1], C[i� 1, j]} if X[i] 6= Y [j] and i, j > 0

C[5, 4] = max{C[5, 3], C[4, 4]} = 3

Length of LCS of X and Y is 3

X

Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

DP algorithm
int lcs(char* X,char* Y){
    int i, j, score[m][n];
    int m = strlen(X), n = strlen(Y); 
    for(i=0;i<=m;i++) { 
        for(j=0;j<=n;j++){ 
            if(i==0 || j==0) 
                score[i][j]=0; 
            else if(X[i] == Y[j] ) 
                score[i][j] = score[i-1][j-1] + 1; 
            else{
                if(score[i][j-1]>score[i-1][j])
                    score[i][j] = score[i][j-1];
                else
                    score[i][j] = score[i-1][j];
            }
        } 
    }
    return score[m][n];
}

Complexity: O(mn)
m is the length of X
n is the length of Y



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Longest Common Subsequence

• We have found the length of LCS

• Next step: print out the LCS

• Traverse the table starting from L[m][n]

• For every cell C[i][j]

• If characters (in X and Y) corresponding to C[i][j] are same

• Include this character as part of LCS

• Else 

• Compare values of C[i-1][j] and C[i][j-1] and go in direction of 
greater value.



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recovering LCS

0

1

2

3

4

5

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]
A C T G

A C G G A

• X[5]!=Y[4]
• So compare C[5,3] and C[4,4] 
• C[4,4] is greater
• Go to C[4,4]

X

Y

LCS=“”



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recovering LCS

0

1

2

3

4

5

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]
A C T G

A C G G A

• X[4]=Y[4]
• Append G to LCS
• Go to X[3,3]

X

Y

LCS=“G”



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recovering LCS

0

1

2

3

4

5

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]
A C T G

A C G G A

• X[3]!=Y[3]
• So compare C[2,3] and C[3,2] 
• They are equal, choose either one
• Go to C[2,3]

X

Y

LCS=“G”



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recovering LCS

0

1

2

3

4

5

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]
A C T G

A C G G A

• X[2]!=Y[3]
• So compare C[1,3] and C[2,2] 
• C[2,2] is greater
• Go to C[2,2]

X

Y

LCS=“G”



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recovering LCS

0

1

2

3

4

5

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]
A C T G

A C G G A

• X[2]=Y[2]
• Append C to LCS
• Go to X[1,1]

X

Y

LCS=“CG”



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recovering LCS

0

1

2

3

4

5

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]
A C T G

A C G G A

• X[1]=Y[1]
• Append A to LCS
• Go to X[0,0]

X

Y

LCS=“ACG”



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Recovering LCS

0

1

2

3

4

5

0 0 0 0 0

0 1 1 1 1

0 1 2 2 2

0 1 2 2 3

0 1 2 2 3

0 1 2 2 3

0 1 2 3 4

C[i,j]
A C T G

A C G G A

• Reach C[0,0]
• Return LCS

X

Y

LCS=“ACG”



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

DP Algorithm
// Write this code segment after the table is constructed

   int index = score[m][n];
   char LCS[index+1];
   LCS[index] = '\0';
   i = m;
   j = n;
   while (i > 0 && j > 0)
   {
      if (X[i-1] == Y[j-1])
      {
          LCS[index-1] = X[i-1];
          i--; j--; index--; 
      }
      else if (score[i-1][j] > score[i][j-1])
         i--;
      else
         j--;
   }
   printf("LCS: %s\n", LCS );



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Longest Common Subsequence

• Building the table: O(nm)

• Recovering the LCS from the table: O(n + m)

• We walk up and left in an n-by-m array

• We can only do that for n+m steps.

• Overall complexity of DP algorithm: O(nm)



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Thank You!


