CSCl2 100 Data Structures Medians and Order Statistics

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science \& Engineering
 The Chinese University of Hong Kong

Outline

- Order Statistics
- Overview of QuickSort
- Selection in Expected Linear Time
- Selection in Worst-Case Linear Time
- Analysis www.cs.bu.edu/fac/gkollios/cs| | 3/Slides/quicksort.ppt

What Are Order Statistics?

- The k-th order statistic is the k-th smallest element of an array.

\[

\]

- The lower median is the $\left\lfloor\frac{n}{2}\right\rfloor$-th order statistic.
- The upper median is the $\left\lceil\frac{n}{2}\right\rceil$-th order statistic.
- If n is odd, lower and upper median are the same.

CSCI2I00 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

What are Order Statistics?

- Selecting ith-ranked item from a collection.
- First: $i=1$
- Last: $i=n$
- Median(s): $i=\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil$

Order Statistics Overview

- Assume collection is unordered, otherwise trivial.
find the ith order stat $=A[i]$
- Can sort first - $\Theta(n \log n)$, but can do better - $\Theta(n)$.
- We can find max and min in time (obvious).
- Can we find any order statistics in linear time? (not obvious!)

Order Statistics Overview

- How can we modify QuickSort to obtain expected-case $\Theta(\mathrm{n})$?
- Pivot, partition, but recur only on one set of data. No join.

QuickSort

- Given an array of n elements (e.g., integers):
- If array only contains one element, return
- Else
- pick one element to use as pivot.
- Partition elements into two sub-arrays:
- Elements less than or equal to pivot
- Elements greater than pivot
- Quicksort two sub-arrays
- Return results

Example

- We are given array of n integers to sort:

Pick Pivot Element

- There are a number of ways to pick the pivot element. In this example, we will use the first element in the array:

Partition

Recursion: Quicksort Sub-arrays

Selection in Expected Linear Time

- Randomized-Select(A[p..r],i) //looking for ith o.s. if $p=r$ return A[p]
$\mathrm{q}<$ — Randomized-Partition(A,p,r)
$\mathrm{k}<-\mathrm{q}-\mathrm{p}+\mathrm{I} \quad / /$ the size of the left partition
if $\mathrm{i}=\mathrm{k} \quad$ //then the pivot value is the answer
return A[q]
else if $\mathrm{i}<\mathrm{k} \quad / /$ then the answer is in the front
return Randomized-Select(A,p,q-I,i)
else $\quad / /$ then the answer is in the back half
return Randomized-Select(A,q+1,r,i-k)

Example

Find the 2-nd order statistic

Example

Pivot

Example

Example

Example

Exchange

Example

Example

Example

Exchange

Example

Example

Exchange

Example

The 4-th order statistic

Need to find the 2-nd order statistic in the sub-array

Example

Example

Example

Exchange

Example

Example

Exchange

Example

The 2-nd order statistic

Randomized Selection:Analysis

- Analyzing RandomizedSelect()
- Worst case: partition always 0:n-I
- $T(n)=T(n-1)+O(n)=O\left(n^{2}\right)$
- No better than sorting!
- "Best" case: suppose a 9:I partition
- $T(n)=T(9 n / 10)+O(n)=O(n)$
- Better than sorting!
- Average case: $O(n)$ remember from QuickSort

Worst-Case Linear-Time Selection

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
- Guarantee a good partitioning element
- Guarantee worst-case linear time selection
- Warning: Non-obvious \& unintuitive algorithm ahead!
- Blum, Floyd, Pratt, Rivest, Tarjan (I973)

Worst-Case Linear-Time Selection

- The algorithm in words:
I. Divide n elements into groups of 5

2. Find median of each group (How? How long?)
3. Use Select() recursively to find median x of the $n / 5$
4. Partition the n elements around x . Let $\mathrm{k}=\operatorname{rank}(\mathrm{x})$
5. if $(i==k)$ then return x
if ($\mathrm{i}<\mathrm{k}$) then use Select() recursively to find ith smallest element in first partition else ($\mathrm{i}>\mathrm{k}$) use Select() recursively to find ($\mathrm{i}-\mathrm{k}$)th smallest element in last partition

Order Statistics:Algorithm

Select(A,n,i):

Divide input into groups of size 5 .
/* Partition on median-of-medians */ medians = array of each group's median.
$O(n)$ pivot $=$ Select(medians, $\mathrm{n} / 5, \mathrm{n} / \mathrm{IO}$) Left Array L and Right Array G = partition(A, pivot) ${ }^{5}$
/* Find ith element in L, pivot, or G */
$k=|L|+1$
If $\mathrm{i}=\mathrm{k}$, return pivot
If $i<k$, return Select(L, $k-I, i)$
$O(1)$
If $i>k$, return $\operatorname{Select}(\mathrm{G}, \mathrm{n}-\mathrm{k}, \mathrm{i}-\mathrm{k})$

Order Statistics:Analysis

Order Statistics:Analysis

- One Group of 5 elements

Lesser
Elements

Median

Greater
 Elements

Order Statistics:Analysis

All groups of 5 elements. (At most one smaller group.)

Order Statistics:Analysis

Definitely Lesser Elements

Definitely Greater Elements

Order Statistics:Analysis I

Must recur on all elements outside one of these boxes. How many?

Order Statistics:Analysis I

$\lfloor\lceil n / 5\rceil / 2\rfloor$ full groups of 5

Order Statistics:Analysis I

$\lceil\lceil n / 5\rceil / 2\rceil$ partial groups of 2

Order Statistics:Analysis I

$\lfloor\lceil n / 5\rceil / 2\rfloor$ full groups of $5 \quad\lceil\lceil n / 5\rceil / 2\rceil$ partial groups of 2

Count elements outside smaller box. ${ }^{5\lfloor\lceil n / 5\rceil / 2\rfloor+2\lceil\lceil n / 5\rceil / 2\rceil \leq 7 n / 10+6}$

Order Statistics:Analysis

$$
T(n)=T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+O(n)
$$

A very unusual recurrence. How to solve?

Order Statistics:Analysis

Substitution: Prove $T(n) \leq c n$

$$
\begin{aligned}
T(n) & \leq c\left\lceil\frac{n}{5}\right\rceil+c\left(\frac{7 n}{10}+6\right)+d n \\
& \leq c\left(\frac{n}{5}+1\right)+c\left(\frac{7 n}{10}+6\right)+d n \\
& =\frac{9}{10} c n+7 c+d n \\
& =c n-(c n / 10-7 c-d n) \\
& \leq c n
\end{aligned}
$$

when choose c, d such that $c n / 10-7 c-d n \geq 0$

Order Statistics

Why groups of 5?

Order Statistics

Why groups of 5?

Sum of two recurrence sizes must be <1. Grouping by 5 is smallest size that works.

Thank You!

