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The Single-Source Shortest Path 
Problem

• Input: Directed graph G = (V, E), edge lengths ce for each 
e ∈ E, source vertex s ∈ V.

• Goal: For every destination v ∈ V , compute the length 
(sum of edge costs) of a shortest s-v path.
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On Dijkstra’s Algorithm
• Advantages: O(m log n) running time using heaps (n = 

number of vertices, m = number of edges)

• Disadvantages: 

1. Not always correct with negative edge lengths [e.g. if edges → 
financial transactions]

2. Not very distributed (relevant for Internet routing)

• Solution: The Bellman-Ford algorithm
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A Failed Example

A

C

B

D

0 1
1

99 -300

v Known dv pv

A 0 0 -

B 0 - -

C 0 - -

D 0 - -
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A Failed Example

A

C

B

D

0 1
1

99 -300

v Known dv pv

A 1 0 -

B 1 1 A

C 1 0 A

D 1 99 A

However,  the shortest path from A to B should be A->D->B 
with length -201, not 1.
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Negative cycles
• Def. A negative cycle is a directed cycle whose sum of 

edge weights is negative.

• If a graph contains a negative-weight cycle, then some 
shortest paths may not exist

• Negative Cycle

• A->C->B (0-2+1=-1)

A

C

B

D

0 -2
1

99 -300
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Bellman-Ford algorithm
• Finds all shortest-path lengths from a source s ∈ V to all 

v ∈ V or determines that a negative-weight cycle exists

Initialize d[s]=0 and d[v]=∞ for all other vertices.

for i ←1 to |V| -1

  do for each edge (u, v) ∈ E 

    do if d[v] > d[u] + w(u, v)

        then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ E

    do if d[v] > d[u] + w(u, v) 

        then report that a negative-weight cycle exists

Relaxation Step}
} Check negative-weight cycle
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Example

A B C D

0 ∞ ∞ ∞
A

C

B

D

0 -2
1

99 -300
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B
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1

99 -300

• The first iteration
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A B C D

0 ∞ 0 99
A
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D

0 -2
1

99 -300
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Example

A B C D

0 ∞ 0 99

0 ∞ 0 99
A

C

B

D

0 -2
1

99 -300

• The second iteration
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Example

A B C D

0 ∞ 0 99

0 -2 0 99
A

C

B

D

0 -2
1

99 -300

• The second iteration
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Example

A B C D

0 ∞ 0 99

0 -2 0 -302
A

C

B

D

0 -2
1

99 -300

• The second iteration
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Example

A B C D

0 ∞ 0 99

-1 -2 0 -302
A

C

B

D

0 -2
1

99 -300

• The second iteration
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Example

A B C D

0 ∞ 0 99

0 -2 0 -302

-1 -2 0 -302

A

C

B

D

0 -2
1

99 -300

• The third iteration
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Example

A B C D

0 ∞ 0 99

0 -2 0 -302

-1 -2 0 -302

-1 -2 -1 -302

A

C

B

D

0 -2
1

99 -300

• The forth iteration
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Example

A B C D

0 ∞ 0 99

0 -2 0 -302

-1 -2 0 -302

-1 -2 -1 -302

A

C

B

D

0 -2
1

99 -300

d[B] > d[C] -2, thus negative-weight cycle exits
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Bellman-Ford algorithm: analysis
• Proposition: Dynamic programming algorithm 

computes SPT in any edge- weighted digraph with no 
negative cycles in time proportional to E × V.

• Practical Improvement

• Observation. If d[v] does not change during pass i, no need to 
relax any edge pointing from v in pass i+1. 

• FIFO implementation. Maintain queue of vertices whose d[] 
changed.

• Overall effect

• The running time is still proportional to E × V in worst case.

• But much faster than that in practice.
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Single source shortest-paths 
implementation: cost summary 

algorithm restriction typical case worst case extra space

topological 
sort

no directed 
cycles E + V E + V V

Dijkstra 
(binary heap) 

no negative 
weights E log V E log V V

Bellman-
Ford

no negative 
cycles E V E V V

Bellman-Ford 
(queue-based)

no negative 
cycles E + V E V V
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The Mincut Problem
• Input. An edge-weighted digraph, source vertex s, and 

target vertex t.

• each edge has a positive capacity
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The Mincut Problem
• A st-cut (cut) is a partition of the vertices into two 

disjoint sets, with s in one set A and t in the other set B. 

• Its capacity is the sum of the capacities of the edges from 
A to B.
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The Mincut Problem
• A st-cut (cut) is a partition of the vertices into two 

disjoint sets, with s in one set A and t in the other set B. 

• Its capacity is the sum of the capacities of the edges from 
A to B.

• Minimum st-cut (mincut) problem. Find a cut of 
minimum capacity. 
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Mincut Applications
• "Free world" goal. Cut supplies (if cold war turns into 

real war).

• rail network connecting Soviet Union with Eastern European countries 
(map declassified by Pentagon in 1999)
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Mincut Applications
• Government-in-power’s goal. Cut off communication to 

set of people.
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The Maxflow Problem
• Input. An edge-weighted digraph, source vertex s, and 

target vertex t.

• each edge has a positive capacity
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The Max-Flow Problem
• An st-flow (flow) is an assignment of values to the edges such that:

• Capacity constraint: 0 ≤ edge's flow ≤ edge's capacity.

• Local equilibrium: inflow = outflow at every vertex (except s and t).
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The Max-Flow Problem
• The value of a flow is the inflow at t.

• we assume no edge points to s or from t



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

The Max-Flow Problem
• The value of a flow is the inflow at t.

• we assume no edge points to s or from t

• Maximum st-flow (maxflow) problem. Find a flow of 
maximum value.
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Maxflow Applications
• Soviet Union goal. Maximize flow of supplies to Eastern 

Europe. 

• rail network connecting Soviet Union with Eastern European countries 
(map declassified by Pentagon in 1999)
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Maxflow Applications
• "Free world" goal. Maximize flow of information to 

specified set of people.
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Summary
• Input. A weighted digraph, source vertex s, and target 

vertex t. 

• Mincut problem. Find a cut of minimum capacity.

• Maxflow problem. Find a flow of maximum value. 

value of flow = 28 capacity of cut = 28

These two problems are dual!
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Ford-Fulkerson Algorithm
• Initialization. Start with 0 flow.
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Ford-Fulkerson Algorithm
• Idea: increase flow along augmenting paths

• Augmenting path. Find an undirected path from s to t such that:

• Can increase flow on forward edges (not full).

• Can decrease flow on backward edge (not empty).
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Ford-Fulkerson Algorithm
• Termination. All paths from s to t are blocked by either a

• Full forward edge.

• Empty backward edge.
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Ford-Fulkerson Algorithm
• Start with 0 flow.

• While there exists an augmenting path:

• find an augmenting path

• compute bottleneck capacity

• increase flow on that path by bottleneck capacity
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Questions
1. How to compute a mincut?

2. How to find an augmenting path?

3. If FF terminates, does it always compute a maxflow?

4. Does FF always terminate? If so, after how many 
augmentations?
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Relationship between flows and 
cuts

• The net flow across a cut (A, B) is the sum of the flows on its edges from 
A to B minus the sum of the flows on its edges from B to A.

• Flow-value lemma. Let f be any flow and let (A, B) be any cut. Then, the 
net flow across (A, B) equals the value of f.
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Relationship between flows and 
cuts

• The net flow across a cut (A, B) is the sum of the flows on its edges from 
A to B minus the sum of the flows on its edges from B to A.

• Flow-value lemma. Let f be any flow and let (A, B) be any cut. Then, the 
net flow across (A, B) equals the value of f.

• Pf. By induction on the size of B.  

・Base case: B = { t }.  

・Induction step: remains true by local equilibrium when moving any 

vertex from A to B.

• Corollary. Outflow from s = inflow to t = value of flow.
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Relationship between flows and 
cuts

• Weak duality. Let f be any flow and let (A, B) be any cut. Then, the value of 
the flow ≤ the capacity of the cut.

• Pf. Value of flow f = net flow across cut (A, B) ≤ capacity of cut (A, B).

flow-value lemma flow bounded by capacity
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Maxflow-mincut theorem
• Augmenting path theorem: A flow f is a maxflow iff no augmenting paths. 

• Maxflow-mincut theorem: Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f :

1. There exists a cut whose capacity equals the value of the flow f. 

2. f is a maxflow.

3. There is no augmenting path with respect to f.

[ 1 ⇒ 2 ]

• Suppose that (A, B) is a cut with capacity equal to the value of f.

• Then, the value of any flow f ' ≤ capacity of (A, B) = value of f. 

• Thus, f is a maxflow. weak duality by assumption
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Maxflow-mincut theorem
• Augmenting path theorem: A flow f is a maxflow iff no augmenting paths. 

• Maxflow-mincut theorem: Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f :

1. There exists a cut whose capacity equals the value of the flow f. 

2. f is a maxflow.

3. There is no augmenting path with respect to f.

[ 2 ⇒ 3 ] We prove contrapositive: ~3 ⇒ ~2.

• Suppose that there is an augmenting path with respect to f.

• Can improve flow f by sending flow along this path. 

• Thus, f is not a maxflow.
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Maxflow-mincut theorem
• Augmenting path theorem: A flow f is a maxflow iff no augmenting paths. 

• Maxflow-mincut theorem: Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f :

1. There exists a cut whose capacity equals the value of the flow f. 

2. f is a maxflow.

3. There is no augmenting path with respect to f.

[ 3 ⇒ 1 ] Suppose that there is no augmenting path with respect to f. 

• Let (A, B) be a cut where A is the set of vertices connected to s by an undirected path 
with no full forward or empty backward edges. 

• By definition, s is in A; since no augmenting path, t is in B.

• Capacity of cut = net flow across cut  
                       = value of flow f.

forward edges full; backward edges empty

flow-value lemma 
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• To compute mincut (A, B) from maxflow f :

• By augmenting path theorem, no augmenting paths with respect to f.

• Compute A = set of vertices connected to s by an undirected path 
with no full forward or empty backward edges.

Computing a mincut from a maxflow
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Questions
1. How to compute a mincut? Easy. ✔

2. How to find an augmenting path? BFS works well.

3. If FF terminates, does it always compute a maxflow? Yes. ✔ 

4. Does FF always terminate? If so, after how many 
augmentations? yes, provided edge capacities are integers 
(or augmenting paths are chosen carefully). It requires 
clever analysis.
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Ford-Fulkerson algorithm with integer capacities

• Important special case. Edge capacities are integers 
between 1 and U.

• Proposition. Number of augmentations ≤ the value of the 
maxflow.

• Pf. Each augmentation increases the value by at least 1. 
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Worst Case
• Bad news. Even when edge capacities are integers, 

number of augmenting paths could be equal to the value 
of the maxflow.
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Worst Case
• Bad news. Even when edge capacities are integers, 

number of augmenting paths could be equal to the value 
of the maxflow.

……
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Worst Case
• Bad news. Even when edge capacities are integers, 

number of augmenting paths could be equal to the value 
of the maxflow.

• can be exponential in input size

• Good news. This case is easily avoided. [use shortest/
fattest path]
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How to choose augmenting paths?
• FF performance depends on choice of augmenting paths. 

augmenting path number of paths implementation

shortest path ≤ 1/2E V queue (BFS)

fattest path ≤ E ln(E U) priority queue

random path ≤ EU randomized queue 

DFS path ≤ EU stack (DFS)

digraph with V vertices, E edges, and integer capacities between 1 and U
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Maximum flow algorithms: theory

maxflow algorithms for sparse digraphs with E edges, integer capacities between 1 and U
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Outline

• The Single-Source Shortest Path Problem

• The Maximum Flow Problem

• The Maximum Cut Problem 

• The Traveling Salesman Problem
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The Maximum Cut Problem
• Input: An undirected graph G = (V , E ).

• Goal: A cut (A,B) – a partition of V into two non-empty 
sets – that maximizes the number of crossing edges. 

• Sad fact: NP-complete. 

• Computationally tractable special case: Bipartite graphs 
(i.e., where there is a cut such that all edges are crossing)

• Solve in linear time via breadth-first search
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Exercise
• Question: What is the value of a maximum cut in the 

following graph?

A. 4

B. 6

C. 8

D. 10

A B

C

E

D

F
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A Local Search Algorithm
• Notation: For a cut (A,B) and a vertex v, define  

cv(A, B) = # of edges incident on v that cross (A, B)  
dv(A, B) = # of edges incident on v that don’t cross (A, B)

v

A B

cv(A, B)=2

dv(A, B)=3
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A Local Search Algorithm
1. Let (A,B) be an arbitrary cut of G

2. While there is a vertex v with dv(A, B) > cv(A, B):

• Move v to other side of the cut 

• increases number of crossing edges by dv(A, B) − cv(A, B) > 0

3. Return final cut (A,B)

• Note: Terminates within       iterations, hence in 
polynomial time. 
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Performance Guarantees
• Theorem: This local search algorithm always outputs a 

cut in which the number of crossing edges is at least 50% 
of the maximum possible. (Even 50% of |E|)
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Performance Guarantees
• A tight example

u v

w x

A B
2 crossing edges



CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Performance Guarantees
• A tight example

u v

w x

A B
2 crossing edges

A*

B*

4 crossing 
edges
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Performance Guarantees
• Cautionary point: Expected number of crossing edges of 

a random cut already is 1/2|E|.

Proof: Consider a random cut (A,B). For edge e ∈ E, define 

• Xe =1, if e crosses (A,B),

• Xe =0, otherwise.

• We have E[Xe]=Pr[Xe = 1]=1/2. 

• So E[# crossing edges]=E[   eXe]=   E[Xe]=|E|/2.   QED
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Proof of Performance Guarantee
• Theorem: This local search algorithm always outputs a 

cut in which the number of crossing edges is at least 50% 
of the maximum possible. (Even 50% of |E|)

Proof. Let (A,B) be a locally optimal cut. Then, for every vertex v, 
dv(A,B) ≤ cv(A,B). Summing over all v ∈ V:

So:  2· [# of non-crossing edges] ≤ 2· [# of crossing edges] 

      2· |E| ≤ 4· [# of crossing edges] 

      # of crossing edges≥ 1/2|E| QED! 
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Weighted Maximum Cut Problem
• Generalization: Each edge e ∈ E has a nonnegative weight 

we , want to maximize total weight of crossing edges.

• Notes: 

1. Local search still well defined

2. Performance guarantee of 50% still holds for locally optimal 
cuts (also for a random cut)

3. No longer guaranteed to converge in polynomial time [non-
trivial exercise]
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Outline

• The Single-Source Shortest Path Problem

• The Maximum Flow Problem

• The Maximum Cut Problem 

• The Traveling Salesman Problem
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Problem Definition
• Travelling Salesman Problem (TSP): Given a set 

of cities and distance between each pair of cities, the 
problem is to find the shortest possible route that visits 
every city exactly once and returns to the origin city.
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Applications of the TSP

• Routing around Cities

• Computer Wiring

• connecting together computer components using minimum wire length

• Archaeological Seriation

• ordering sites in time

• Genome Sequencing

• arranging DNA fragments in sequence

• Job Sequencing

• sequencing jobs in order to minimize total set-up time between jobs

• Wallpapering to Minimize Waste
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How to solve?
• The problem is a famous NP hard problem. There is no 

polynomial time known solution for this problem.

• Solutions

1. Try every possibility

• O(n!) – grows faster than exponentially

• If it took 1 microsecond to calculate each possibility takes 10140 centuries to 
calculate all possibilities when n = 100

2. Optimizing Methods  

• Obtain guaranteed optimal solution, but can take a very very long time

3. Heuristic Methods

• obtain ‘good’ solutions ‘quickly’ by intuitive methods.

https://www.geeksforgeeks.org/np-completeness-set-1/
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Optimizing Methods
1. Make sure every city visited once and left once – in cheapest way (Easy) 

• The Assignment Problem

• Results in subtours

2. Put in extra constraints to remove subtours (More Difficult)

• Results in new subtours 

3. Remove new subtours and results in further subtours

4. Further subtours ……

5. Optimal Solution
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1. Make sure every city visited once and left once – in cheapest way (Easy)
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3. Remove new subtours and results in further subtours 

Length 1179
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4. Further subtours

Length 1189
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4. Further subtours
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5. Optimal Solution
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The Nearest Neighbour Method
• A Heuristic Method

• A ‘Greedy’ Method

• Start Anywhere

• Go to Nearest Unvisited City

• Continue until all Cities visited

• Return to Beginning
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A 42-City Problem  — The Nearest Neighbour Method 

Starting at City 1 
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A 42-City Problem  — The Nearest Neighbour Method 
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A 42-City Problem  — The Nearest Neighbour Method 
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A 42-City Problem  — The Nearest Neighbour Method 

Remove Crossovers
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Remove Crossovers
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Christofides Method
• A heuristic method

• A Greedy Algorithm

1. Create Minimum Cost Spanning Tree

2. ‘Match’ Odd Degree Nodes

3. Create an Eulerian Tour

• Short circuit cities revisited
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A 42-City Problem  — Christofides Method
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Matching Odd Degree Nodes
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A 42-City Problem  — Christofides Method
Create a Eulerian Tour - Short Circuiting Cities revisited

Length 1436
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History
• 1987 Padberg and Rinaldi — Printed Circuit Board 2,392 

cities
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History
• 1998 Applegate, Bixby, Chvátal and Cook — USA Towns 

of 500 or more population with13,509 cities 
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History
• 2001 Applegate, Bixby, 

Chvátal and Cook — 
Towns in Germany   
15,112 Cities 
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History
• 2004 Applegate, Bixby, Chvátal, Cook and Helsgaun — 

Sweden 24,978 Cities  
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Reference

• https://algs4.cs.princeton.edu/home/

• Coursera ‘Shortest Paths Revisited, NP-Complete 
Problems and What To Do About Them’

• https://www.youtube.com/watch?v=SC5CX8drAtU

• personal.lse.ac.uk/williahp/talks/
The_Travelling_Salesman_Problem.ppt
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